(function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i { const key64bit = blake.blake2bHex(kStr, null, 8) // expand key to fixed length of 64 bits const key64arr = [parseInt(key64bit.slice(0, 4), 16), parseInt(key64bit.slice(4, 8), 16), parseInt(key64bit.slice(8, 12), 16), parseInt(key64bit.slice(12, 16), 16)] return zwus.encodeNumberArray(Array.from(ptStr, c => speck32_64.encrypt(c.codePointAt(0), key64arr)), base) }, PLAIN: (ptStr, base) => zwus.encodeString(ptStr, base) }, YES: { SPECK32_64ECB: (ptStr, base, kStr) => { const key64bit = blake.blake2bHex(kStr, null, 8) // expand key to fixed length of 64 bits const key64arr = [parseInt(key64bit.slice(0, 4), 16), parseInt(key64bit.slice(4, 8), 16), parseInt(key64bit.slice(8, 12), 16), parseInt(key64bit.slice(12, 16), 16)] return zwus.decodeToNumberArray(ptStr, base).map(x => { try { return String.fromCodePoint(speck32_64.decrypt(x, key64arr)); } catch { return '' } }).join(''); }, PLAIN: (ptStr, base) => zwus.decodeToString(ptStr, base) } } // https://soundcloud.com/esudesu/tried-luvletter },{"blakejs":4,"generic-speck":6,"zwus":7}],2:[function(require,module,exports){ // Blake2B in pure Javascript // Adapted from the reference implementation in RFC7693 // Ported to Javascript by DC - https://github.com/dcposch const util = require('./util') // 64-bit unsigned addition // Sets v[a,a+1] += v[b,b+1] // v should be a Uint32Array function ADD64AA (v, a, b) { const o0 = v[a] + v[b] let o1 = v[a + 1] + v[b + 1] if (o0 >= 0x100000000) { o1++ } v[a] = o0 v[a + 1] = o1 } // 64-bit unsigned addition // Sets v[a,a+1] += b // b0 is the low 32 bits of b, b1 represents the high 32 bits function ADD64AC (v, a, b0, b1) { let o0 = v[a] + b0 if (b0 < 0) { o0 += 0x100000000 } let o1 = v[a + 1] + b1 if (o0 >= 0x100000000) { o1++ } v[a] = o0 v[a + 1] = o1 } // Little-endian byte access function B2B_GET32 (arr, i) { return arr[i] ^ (arr[i + 1] << 8) ^ (arr[i + 2] << 16) ^ (arr[i + 3] << 24) } // G Mixing function // The ROTRs are inlined for speed function B2B_G (a, b, c, d, ix, iy) { const x0 = m[ix] const x1 = m[ix + 1] const y0 = m[iy] const y1 = m[iy + 1] ADD64AA(v, a, b) // v[a,a+1] += v[b,b+1] ... in JS we must store a uint64 as two uint32s ADD64AC(v, a, x0, x1) // v[a, a+1] += x ... x0 is the low 32 bits of x, x1 is the high 32 bits // v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated to the right by 32 bits let xor0 = v[d] ^ v[a] let xor1 = v[d + 1] ^ v[a + 1] v[d] = xor1 v[d + 1] = xor0 ADD64AA(v, c, d) // v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 24 bits xor0 = v[b] ^ v[c] xor1 = v[b + 1] ^ v[c + 1] v[b] = (xor0 >>> 24) ^ (xor1 << 8) v[b + 1] = (xor1 >>> 24) ^ (xor0 << 8) ADD64AA(v, a, b) ADD64AC(v, a, y0, y1) // v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated right by 16 bits xor0 = v[d] ^ v[a] xor1 = v[d + 1] ^ v[a + 1] v[d] = (xor0 >>> 16) ^ (xor1 << 16) v[d + 1] = (xor1 >>> 16) ^ (xor0 << 16) ADD64AA(v, c, d) // v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 63 bits xor0 = v[b] ^ v[c] xor1 = v[b + 1] ^ v[c + 1] v[b] = (xor1 >>> 31) ^ (xor0 << 1) v[b + 1] = (xor0 >>> 31) ^ (xor1 << 1) } // Initialization Vector const BLAKE2B_IV32 = new Uint32Array([ 0xf3bcc908, 0x6a09e667, 0x84caa73b, 0xbb67ae85, 0xfe94f82b, 0x3c6ef372, 0x5f1d36f1, 0xa54ff53a, 0xade682d1, 0x510e527f, 0x2b3e6c1f, 0x9b05688c, 0xfb41bd6b, 0x1f83d9ab, 0x137e2179, 0x5be0cd19 ]) const SIGMA8 = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3, 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4, 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8, 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13, 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9, 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11, 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10, 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5, 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 ] // These are offsets into a uint64 buffer. // Multiply them all by 2 to make them offsets into a uint32 buffer, // because this is Javascript and we don't have uint64s const SIGMA82 = new Uint8Array( SIGMA8.map(function (x) { return x * 2 }) ) // Compression function. 'last' flag indicates last block. // Note we're representing 16 uint64s as 32 uint32s const v = new Uint32Array(32) const m = new Uint32Array(32) function blake2bCompress (ctx, last) { let i = 0 // init work variables for (i = 0; i < 16; i++) { v[i] = ctx.h[i] v[i + 16] = BLAKE2B_IV32[i] } // low 64 bits of offset v[24] = v[24] ^ ctx.t v[25] = v[25] ^ (ctx.t / 0x100000000) // high 64 bits not supported, offset may not be higher than 2**53-1 // last block flag set ? if (last) { v[28] = ~v[28] v[29] = ~v[29] } // get little-endian words for (i = 0; i < 32; i++) { m[i] = B2B_GET32(ctx.b, 4 * i) } // twelve rounds of mixing // uncomment the DebugPrint calls to log the computation // and match the RFC sample documentation // util.debugPrint(' m[16]', m, 64) for (i = 0; i < 12; i++) { // util.debugPrint(' (i=' + (i < 10 ? ' ' : '') + i + ') v[16]', v, 64) B2B_G(0, 8, 16, 24, SIGMA82[i * 16 + 0], SIGMA82[i * 16 + 1]) B2B_G(2, 10, 18, 26, SIGMA82[i * 16 + 2], SIGMA82[i * 16 + 3]) B2B_G(4, 12, 20, 28, SIGMA82[i * 16 + 4], SIGMA82[i * 16 + 5]) B2B_G(6, 14, 22, 30, SIGMA82[i * 16 + 6], SIGMA82[i * 16 + 7]) B2B_G(0, 10, 20, 30, SIGMA82[i * 16 + 8], SIGMA82[i * 16 + 9]) B2B_G(2, 12, 22, 24, SIGMA82[i * 16 + 10], SIGMA82[i * 16 + 11]) B2B_G(4, 14, 16, 26, SIGMA82[i * 16 + 12], SIGMA82[i * 16 + 13]) B2B_G(6, 8, 18, 28, SIGMA82[i * 16 + 14], SIGMA82[i * 16 + 15]) } // util.debugPrint(' (i=12) v[16]', v, 64) for (i = 0; i < 16; i++) { ctx.h[i] = ctx.h[i] ^ v[i] ^ v[i + 16] } // util.debugPrint('h[8]', ctx.h, 64) } // reusable parameterBlock const parameterBlock = new Uint8Array([ 0, 0, 0, 0, // 0: outlen, keylen, fanout, depth 0, 0, 0, 0, // 4: leaf length, sequential mode 0, 0, 0, 0, // 8: node offset 0, 0, 0, 0, // 12: node offset 0, 0, 0, 0, // 16: node depth, inner length, rfu 0, 0, 0, 0, // 20: rfu 0, 0, 0, 0, // 24: rfu 0, 0, 0, 0, // 28: rfu 0, 0, 0, 0, // 32: salt 0, 0, 0, 0, // 36: salt 0, 0, 0, 0, // 40: salt 0, 0, 0, 0, // 44: salt 0, 0, 0, 0, // 48: personal 0, 0, 0, 0, // 52: personal 0, 0, 0, 0, // 56: personal 0, 0, 0, 0 // 60: personal ]) // Creates a BLAKE2b hashing context // Requires an output length between 1 and 64 bytes // Takes an optional Uint8Array key // Takes an optinal Uint8Array salt // Takes an optinal Uint8Array personal function blake2bInit (outlen, key, salt, personal) { if (outlen === 0 || outlen > 64) { throw new Error('Illegal output length, expected 0 < length <= 64') } if (key && key.length > 64) { throw new Error('Illegal key, expected Uint8Array with 0 < length <= 64') } if (salt && salt.length !== 16) { throw new Error('Illegal salt, expected Uint8Array with length is 16') } if (personal && personal.length !== 16) { throw new Error('Illegal personal, expected Uint8Array with length is 16') } // state, 'param block' const ctx = { b: new Uint8Array(128), h: new Uint32Array(16), t: 0, // input count c: 0, // pointer within buffer outlen: outlen // output length in bytes } // initialize parameterBlock before usage parameterBlock.fill(0) parameterBlock[0] = outlen if (key) parameterBlock[1] = key.length parameterBlock[2] = 1 // fanout parameterBlock[3] = 1 // depth if (salt) parameterBlock.set(salt, 32) if (personal) parameterBlock.set(personal, 48) // initialize hash state for (let i = 0; i < 16; i++) { ctx.h[i] = BLAKE2B_IV32[i] ^ B2B_GET32(parameterBlock, i * 4) } // key the hash, if applicable if (key) { blake2bUpdate(ctx, key) // at the end ctx.c = 128 } return ctx } // Updates a BLAKE2b streaming hash // Requires hash context and Uint8Array (byte array) function blake2bUpdate (ctx, input) { for (let i = 0; i < input.length; i++) { if (ctx.c === 128) { // buffer full ? ctx.t += ctx.c // add counters blake2bCompress(ctx, false) // compress (not last) ctx.c = 0 // counter to zero } ctx.b[ctx.c++] = input[i] } } // Completes a BLAKE2b streaming hash // Returns a Uint8Array containing the message digest function blake2bFinal (ctx) { ctx.t += ctx.c // mark last block offset while (ctx.c < 128) { // fill up with zeros ctx.b[ctx.c++] = 0 } blake2bCompress(ctx, true) // final block flag = 1 // little endian convert and store const out = new Uint8Array(ctx.outlen) for (let i = 0; i < ctx.outlen; i++) { out[i] = ctx.h[i >> 2] >> (8 * (i & 3)) } return out } // Computes the BLAKE2B hash of a string or byte array, and returns a Uint8Array // // Returns a n-byte Uint8Array // // Parameters: // - input - the input bytes, as a string, Buffer or Uint8Array // - key - optional key Uint8Array, up to 64 bytes // - outlen - optional output length in bytes, default 64 // - salt - optional salt bytes, string, Buffer or Uint8Array // - personal - optional personal bytes, string, Buffer or Uint8Array function blake2b (input, key, outlen, salt, personal) { // preprocess inputs outlen = outlen || 64 input = util.normalizeInput(input) if (salt) { salt = util.normalizeInput(salt) } if (personal) { personal = util.normalizeInput(personal) } // do the math const ctx = blake2bInit(outlen, key, salt, personal) blake2bUpdate(ctx, input) return blake2bFinal(ctx) } // Computes the BLAKE2B hash of a string or byte array // // Returns an n-byte hash in hex, all lowercase // // Parameters: // - input - the input bytes, as a string, Buffer, or Uint8Array // - key - optional key Uint8Array, up to 64 bytes // - outlen - optional output length in bytes, default 64 // - salt - optional salt bytes, string, Buffer or Uint8Array // - personal - optional personal bytes, string, Buffer or Uint8Array function blake2bHex (input, key, outlen, salt, personal) { const output = blake2b(input, key, outlen, salt, personal) return util.toHex(output) } module.exports = { blake2b: blake2b, blake2bHex: blake2bHex, blake2bInit: blake2bInit, blake2bUpdate: blake2bUpdate, blake2bFinal: blake2bFinal } },{"./util":5}],3:[function(require,module,exports){ // BLAKE2s hash function in pure Javascript // Adapted from the reference implementation in RFC7693 // Ported to Javascript by DC - https://github.com/dcposch const util = require('./util') // Little-endian byte access. // Expects a Uint8Array and an index // Returns the little-endian uint32 at v[i..i+3] function B2S_GET32 (v, i) { return v[i] ^ (v[i + 1] << 8) ^ (v[i + 2] << 16) ^ (v[i + 3] << 24) } // Mixing function G. function B2S_G (a, b, c, d, x, y) { v[a] = v[a] + v[b] + x v[d] = ROTR32(v[d] ^ v[a], 16) v[c] = v[c] + v[d] v[b] = ROTR32(v[b] ^ v[c], 12) v[a] = v[a] + v[b] + y v[d] = ROTR32(v[d] ^ v[a], 8) v[c] = v[c] + v[d] v[b] = ROTR32(v[b] ^ v[c], 7) } // 32-bit right rotation // x should be a uint32 // y must be between 1 and 31, inclusive function ROTR32 (x, y) { return (x >>> y) ^ (x << (32 - y)) } // Initialization Vector. const BLAKE2S_IV = new Uint32Array([ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ]) const SIGMA = new Uint8Array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3, 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4, 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8, 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13, 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9, 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11, 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10, 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5, 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 ]) // Compression function. "last" flag indicates last block const v = new Uint32Array(16) const m = new Uint32Array(16) function blake2sCompress (ctx, last) { let i = 0 for (i = 0; i < 8; i++) { // init work variables v[i] = ctx.h[i] v[i + 8] = BLAKE2S_IV[i] } v[12] ^= ctx.t // low 32 bits of offset v[13] ^= ctx.t / 0x100000000 // high 32 bits if (last) { // last block flag set ? v[14] = ~v[14] } for (i = 0; i < 16; i++) { // get little-endian words m[i] = B2S_GET32(ctx.b, 4 * i) } // ten rounds of mixing // uncomment the DebugPrint calls to log the computation // and match the RFC sample documentation // util.debugPrint(' m[16]', m, 32) for (i = 0; i < 10; i++) { // util.debugPrint(' (i=' + i + ') v[16]', v, 32) B2S_G(0, 4, 8, 12, m[SIGMA[i * 16 + 0]], m[SIGMA[i * 16 + 1]]) B2S_G(1, 5, 9, 13, m[SIGMA[i * 16 + 2]], m[SIGMA[i * 16 + 3]]) B2S_G(2, 6, 10, 14, m[SIGMA[i * 16 + 4]], m[SIGMA[i * 16 + 5]]) B2S_G(3, 7, 11, 15, m[SIGMA[i * 16 + 6]], m[SIGMA[i * 16 + 7]]) B2S_G(0, 5, 10, 15, m[SIGMA[i * 16 + 8]], m[SIGMA[i * 16 + 9]]) B2S_G(1, 6, 11, 12, m[SIGMA[i * 16 + 10]], m[SIGMA[i * 16 + 11]]) B2S_G(2, 7, 8, 13, m[SIGMA[i * 16 + 12]], m[SIGMA[i * 16 + 13]]) B2S_G(3, 4, 9, 14, m[SIGMA[i * 16 + 14]], m[SIGMA[i * 16 + 15]]) } // util.debugPrint(' (i=10) v[16]', v, 32) for (i = 0; i < 8; i++) { ctx.h[i] ^= v[i] ^ v[i + 8] } // util.debugPrint('h[8]', ctx.h, 32) } // Creates a BLAKE2s hashing context // Requires an output length between 1 and 32 bytes // Takes an optional Uint8Array key function blake2sInit (outlen, key) { if (!(outlen > 0 && outlen <= 32)) { throw new Error('Incorrect output length, should be in [1, 32]') } const keylen = key ? key.length : 0 if (key && !(keylen > 0 && keylen <= 32)) { throw new Error('Incorrect key length, should be in [1, 32]') } const ctx = { h: new Uint32Array(BLAKE2S_IV), // hash state b: new Uint8Array(64), // input block c: 0, // pointer within block t: 0, // input count outlen: outlen // output length in bytes } ctx.h[0] ^= 0x01010000 ^ (keylen << 8) ^ outlen if (keylen > 0) { blake2sUpdate(ctx, key) ctx.c = 64 // at the end } return ctx } // Updates a BLAKE2s streaming hash // Requires hash context and Uint8Array (byte array) function blake2sUpdate (ctx, input) { for (let i = 0; i < input.length; i++) { if (ctx.c === 64) { // buffer full ? ctx.t += ctx.c // add counters blake2sCompress(ctx, false) // compress (not last) ctx.c = 0 // counter to zero } ctx.b[ctx.c++] = input[i] } } // Completes a BLAKE2s streaming hash // Returns a Uint8Array containing the message digest function blake2sFinal (ctx) { ctx.t += ctx.c // mark last block offset while (ctx.c < 64) { // fill up with zeros ctx.b[ctx.c++] = 0 } blake2sCompress(ctx, true) // final block flag = 1 // little endian convert and store const out = new Uint8Array(ctx.outlen) for (let i = 0; i < ctx.outlen; i++) { out[i] = (ctx.h[i >> 2] >> (8 * (i & 3))) & 0xff } return out } // Computes the BLAKE2S hash of a string or byte array, and returns a Uint8Array // // Returns a n-byte Uint8Array // // Parameters: // - input - the input bytes, as a string, Buffer, or Uint8Array // - key - optional key Uint8Array, up to 32 bytes // - outlen - optional output length in bytes, default 64 function blake2s (input, key, outlen) { // preprocess inputs outlen = outlen || 32 input = util.normalizeInput(input) // do the math const ctx = blake2sInit(outlen, key) blake2sUpdate(ctx, input) return blake2sFinal(ctx) } // Computes the BLAKE2S hash of a string or byte array // // Returns an n-byte hash in hex, all lowercase // // Parameters: // - input - the input bytes, as a string, Buffer, or Uint8Array // - key - optional key Uint8Array, up to 32 bytes // - outlen - optional output length in bytes, default 64 function blake2sHex (input, key, outlen) { const output = blake2s(input, key, outlen) return util.toHex(output) } module.exports = { blake2s: blake2s, blake2sHex: blake2sHex, blake2sInit: blake2sInit, blake2sUpdate: blake2sUpdate, blake2sFinal: blake2sFinal } },{"./util":5}],4:[function(require,module,exports){ const b2b = require('./blake2b') const b2s = require('./blake2s') module.exports = { blake2b: b2b.blake2b, blake2bHex: b2b.blake2bHex, blake2bInit: b2b.blake2bInit, blake2bUpdate: b2b.blake2bUpdate, blake2bFinal: b2b.blake2bFinal, blake2s: b2s.blake2s, blake2sHex: b2s.blake2sHex, blake2sInit: b2s.blake2sInit, blake2sUpdate: b2s.blake2sUpdate, blake2sFinal: b2s.blake2sFinal } },{"./blake2b":2,"./blake2s":3}],5:[function(require,module,exports){ const ERROR_MSG_INPUT = 'Input must be an string, Buffer or Uint8Array' // For convenience, let people hash a string, not just a Uint8Array function normalizeInput (input) { let ret if (input instanceof Uint8Array) { ret = input } else if (typeof input === 'string') { const encoder = new TextEncoder() ret = encoder.encode(input) } else { throw new Error(ERROR_MSG_INPUT) } return ret } // Converts a Uint8Array to a hexadecimal string // For example, toHex([255, 0, 255]) returns "ff00ff" function toHex (bytes) { return Array.prototype.map .call(bytes, function (n) { return (n < 16 ? '0' : '') + n.toString(16) }) .join('') } // Converts any value in [0...2^32-1] to an 8-character hex string function uint32ToHex (val) { return (0x100000000 + val).toString(16).substring(1) } // For debugging: prints out hash state in the same format as the RFC // sample computation exactly, so that you can diff function debugPrint (label, arr, size) { let msg = '\n' + label + ' = ' for (let i = 0; i < arr.length; i += 2) { if (size === 32) { msg += uint32ToHex(arr[i]).toUpperCase() msg += ' ' msg += uint32ToHex(arr[i + 1]).toUpperCase() } else if (size === 64) { msg += uint32ToHex(arr[i + 1]).toUpperCase() msg += uint32ToHex(arr[i]).toUpperCase() } else throw new Error('Invalid size ' + size) if (i % 6 === 4) { msg += '\n' + new Array(label.length + 4).join(' ') } else if (i < arr.length - 2) { msg += ' ' } } console.log(msg) } // For performance testing: generates N bytes of input, hashes M times // Measures and prints MB/second hash performance each time function testSpeed (hashFn, N, M) { let startMs = new Date().getTime() const input = new Uint8Array(N) for (let i = 0; i < N; i++) { input[i] = i % 256 } const genMs = new Date().getTime() console.log('Generated random input in ' + (genMs - startMs) + 'ms') startMs = genMs for (let i = 0; i < M; i++) { const hashHex = hashFn(input) const hashMs = new Date().getTime() const ms = hashMs - startMs startMs = hashMs console.log('Hashed in ' + ms + 'ms: ' + hashHex.substring(0, 20) + '...') console.log( Math.round((N / (1 << 20) / (ms / 1000)) * 100) / 100 + ' MB PER SECOND' ) } } module.exports = { normalizeInput: normalizeInput, toHex: toHex, debugPrint: debugPrint, testSpeed: testSpeed } },{}],6:[function(require,module,exports){ function speck (params = {}) { const BITS = params.bits || 16 const ROUNDS = params.rounds || 22 const RIGHT_ROTATIONS = params.rightRotations || 7 const LEFT_ROTATIONS = params.leftRotations || 2 const BIT_MAX = 2 ** BITS const BIT_MASK = BIT_MAX - 1 const ROR = (x, r) => (x >> r) | ((x << (BITS - r)) & BIT_MASK) const ROL = (x, r) => ((x << r) & BIT_MASK) | (x >> (BITS - r)) const R = (x, y, k) => { x = ROR(x, RIGHT_ROTATIONS) x = (x + y) & BIT_MASK x ^= k y = ROL(y, LEFT_ROTATIONS) y ^= x return [x, y] } const RR = (x, y, k) => { y ^= x y = ROR(y, LEFT_ROTATIONS) x ^= k x = (x - y) & BIT_MASK x = ROL(x, RIGHT_ROTATIONS) return [x, y] } function encryptRaw (pt, K) { let y = pt[0] let x = pt[1] let b = K[0] let a = K.slice(1) ;[x, y] = R(x, y, b) for (let i = 0; i < ROUNDS - 1; i++) { const j = i % a.length ;[a[j], b] = R(a[j], b, i) ;[x, y] = R(x, y, b) } return [y, x] } function decryptRaw (pt, K) { let y = pt[0] let x = pt[1] let b = K[0] let a = K.slice(1) for (let i = 0; i < ROUNDS - 1; i++) { const j = i % a.length ;[a[j], b] = R(a[j], b, i) } for (let i = 0; i < ROUNDS; i++) { const j = (ROUNDS - 2 - i) % a.length ;[x, y] = RR(x, y, b) ;[a[j], b] = RR(a[j], b, ROUNDS - 2 - i) } return [y, x] } // Wrap function in order to convert any bit size to the internal format function wrapFn (fn) { return (input, key) => { const result = fn([input / BIT_MAX | 0, input & BIT_MASK], key) return result[0] * BIT_MAX + result[1] } } return { encrypt: wrapFn(encryptRaw), decrypt: wrapFn(decryptRaw), encryptRaw, decryptRaw } } module.exports = speck },{}],7:[function(require,module,exports){ 'use strict'; /** * ZWUS (Zero Width Unicode Standard) * https://raw.githubusercontent.com/planetrenox/ZWUS/master/license */ const ZWUS = { 3: {unifier: "\u{00AD}", 0: "\u{180E}", 1: "\u{200B}", 2: "\u{200D}"}, 6: {unifier: "\u{200C}", 0: "\u{200D}", 1: "\u{200F}", 2: "\u{00AD}", 3: "\u{2060}", 4: "\u{200B}", 5: "\u{200E}"}, 8: {unifier: "\u{200C}", 0: "\u{200D}", 1: "\u{200F}", 2: "\u{00AD}", 3: "\u{2060}", 4: "\u{200B}", 5: "\u{200E}", 6: "\u{180E}", 7: "\u{FEFF}"}, /** * Encodes a string into a sequence of zero-width characters. * @param {string} text - The input text to encode. * @param {number} base - The numerical base for encoding. Options: 3, 6, 8. Larger the base, the smaller the output, but the more likely the zero width will be detectable by sight. * @returns {string} The encoded string. */ encodeString: (text, base = 3) => Array.from(text, u => u.codePointAt(0).toString(base).split('').map(x => ZWUS[base][x]).join('')).join(ZWUS[base].unifier), /** * Encodes an array of numbers into a sequence of zero-width characters. * @param {Array} arr - The array of numbers to encode. * @param {number} base - The numerical base for encoding. Options: 3, 6, 8. Larger the base, the smaller the output, but the more likely the zero width will be detectable by sight. * @returns {string} The encoded array. */ encodeNumberArray: (arr, base = 3) => arr.map(n => n.toString(base).split('').map(x => ZWUS[base][x]).join('')).join(ZWUS[base].unifier), /** * Decodes a string of zero-width characters back into the original string. * NOTE: Decoding accuracy is contingent upon the original encoding base and alphabet. * @param {string} text - The encoded text to decode. * @param {number} base - The numerical base for decoding. Must match the base used for encoding. * @returns {string} The decoded string. */ decodeToString: (text, base = 3) => text.split(ZWUS[base].unifier).map(x => String.fromCodePoint(parseInt(Array.from(x).map(z => Object.keys(ZWUS[base]).find(k => ZWUS[base][k] === z)).join(''), base))).join(''), /** * Decodes a string of zero-width characters back into the original array of numbers. * NOTE: Decoding accuracy is contingent upon the original encoding base and alphabet. * @param {string} text - The encoded text to decode. * @param {number} base - The numerical base for decoding. Must match the base used for encoding. * @returns {Array} The decoded array of numbers. */ decodeToNumberArray: (text, base = 3) => text.split(ZWUS[base].unifier).map(x => parseInt(Array.from(x).map(z => Object.keys(ZWUS[base]).find(k => ZWUS[base][k] === z)).join(''), base)), }; // https://soundcloud.com/crystal-castles/pino-placentile-wooden-girl module.exports = ZWUS; },{}]},{},[1]);