Files
lynchmark/tests/1_dijkstra/outputs/google_gemini-2.5-pro_2025-10-13T13-06-49.377Z.js
2025-10-13 13:07:35 +00:00

117 lines
4.7 KiB
JavaScript

/**
* Finds the shortest path in a weighted, undirected graph using Dijkstra's algorithm.
* This function dynamically imports a Priority Queue library from a CDN.
*
* @param {object} graph - The graph structure, e.g., { 'A': { 'B': 1, 'C': 4 }, 'B': { ... } }.
* @param {string} startNode - The starting node for the path.
* @param {string} endNode - The destination node for the path.
* @returns {Promise<number>} A promise that resolves to the total weight of the shortest path, or Infinity if no path exists.
*/
async function findShortestPath(graph, startNode, endNode) {
// 1. Dynamically import the priority queue library from a CDN.
// The 'js-priority-queue' library is a UMD module, so the main export
// is often on the 'default' property when imported this way.
let PriorityQueue;
try {
const PriorityQueueModule = await import('https://cdn.jsdelivr.net/npm/js-priority-queue@0.1.5/priority-queue.min.js');
PriorityQueue = PriorityQueueModule.default;
} catch (error) {
console.error("Failed to load the Priority Queue library:", error);
// Cannot proceed without the library, so we throw an error.
throw new Error("Could not load a required dependency.");
}
// 2. Initialize data structures for Dijkstra's algorithm.
const distances = {}; // Stores the shortest known distance from the startNode to every other node.
const previous = {}; // Stores the preceding node in the shortest path.
// A min-priority queue to store nodes to visit, prioritized by distance.
const pq = new PriorityQueue({ comparator: (a, b) => a.priority - b.priority });
// 3. Set initial state.
Object.keys(graph).forEach(node => {
if (node === startNode) {
distances[node] = 0;
pq.queue({ value: node, priority: 0 }); // Add the start node to the queue with priority 0.
} else {
distances[node] = Infinity;
}
previous[node] = null;
});
// 4. Main loop of the algorithm.
while (pq.length > 0) {
// Get the node with the smallest distance from the queue.
const { value: currentNode } = pq.dequeue();
// If we've reached the end node, we have found the shortest path.
if (currentNode === endNode) {
// If a path exists, the distance will be a finite number.
if (distances[endNode] !== Infinity) {
return distances[endNode];
}
// This break is for the case where endNode is unreachable but was queued
// with an infinite priority (which shouldn't happen with this logic, but is safe).
break;
}
// Explore neighbors of the current node.
if (graph[currentNode]) {
for (const neighbor in graph[currentNode]) {
const weight = graph[currentNode][neighbor];
const newPathWeight = distances[currentNode] + weight;
// If we've found a shorter path to this neighbor...
if (newPathWeight < distances[neighbor]) {
// ...update its distance, record the path, and add it to the queue.
distances[neighbor] = newPathWeight;
previous[neighbor] = currentNode;
pq.queue({ value: neighbor, priority: newPathWeight });
}
}
}
}
// 5. If the loop finishes and we haven't returned, the endNode was not reachable.
return Infinity;
}
// --- Example Usage ---
// Define our weighted, undirected graph.
const graph = {
'A': { 'B': 1, 'C': 4 },
'B': { 'A': 1, 'C': 2, 'D': 5 },
'C': { 'A': 4, 'B': 2, 'E': 3 },
'D': { 'B': 5, 'E': 1 },
'E': { 'C': 3, 'D': 1 },
'F': { 'G': 1 }, // An unconnected component
'G': { 'F': 1 }
};
// We use an async IIFE (Immediately Invoked Function Expression) to run our async function.
(async () => {
try {
console.log("Finding shortest path from A to E...");
const pathWeight1 = await findShortestPath(graph, 'A', 'E');
// Expected Path: A -> B -> C -> E, Weight: 1 + 2 + 3 = 6
console.log(`Shortest path weight from A to E is: ${pathWeight1}`); // Output: 6
console.log("\nFinding shortest path from A to D...");
const pathWeight2 = await findShortestPath(graph, 'A', 'D');
// Expected Path: A -> B -> D, Weight: 1 + 5 = 6
console.log(`Shortest path weight from A to D is: ${pathWeight2}`); // Output: 6
console.log("\nFinding shortest path from A to A...");
const pathWeight3 = await findShortestPath(graph, 'A', 'A');
console.log(`Shortest path weight from A to A is: ${pathWeight3}`); // Output: 0
console.log("\nFinding shortest path from A to F (unreachable)...");
const pathWeight4 = await findShortestPath(graph, 'A', 'F');
console.log(`Shortest path weight from A to F is: ${pathWeight4}`); // Output: Infinity
} catch(err) {
console.error("An error occurred during pathfinding:", err);
}
})();