Docs: Update benchmark results

This commit is contained in:
github-actions[bot]
2025-11-27 19:36:55 +00:00
parent e8b9dd6d0e
commit ba567f4017
109 changed files with 1138 additions and 1679 deletions

View File

@@ -1,32 +1,24 @@
async function processCSV(csv, config) {
const { parse } = await import('https://cdn.jsdelivr.net/npm/papaparse@5/+esm');
const { filterColumn, filterValue, groupBy, aggregateColumn, operation } = config;
const { default: Papa } = await import('https://cdn.jsdelivr.net/npm/papaparse@5/+esm');
const { data } = Papa.parse(csv, { header: true, skipEmptyLines: true });
const { data } = parse(csv, { header: true, skipEmptyLines: true });
const filtered = data.filter(row => row[filterColumn] == filterValue);
const groups = {};
for (const row of filtered) {
const key = row[groupBy];
(groups[key] ??= []).push(row);
(groups[key] ??= []).push(+row[aggregateColumn] || 0);
}
const toNum = v => {
const n = Number(v);
return isNaN(n) ? 0 : n;
};
const ops = {
sum: rows => rows.reduce((s, r) => s + toNum(r[aggregateColumn]), 0),
avg: rows => rows.length ? ops.sum(rows) / rows.length : 0,
count: rows => rows.length
};
return Object.entries(groups).map(([k, v]) => ({
[groupBy]: k,
result: ops[operation](v)
return Object.entries(groups).map(([key, vals]) => ({
[groupBy]: key,
result: operation === 'count' ? vals.length :
operation === 'sum' ? vals.reduce((a, b) => a + b, 0) :
vals.reduce((a, b) => a + b, 0) / vals.length
}));
}
export default processCSV;
export default processCSV;
// Generation time: 4.406s
// Result: FAIL

View File

@@ -1,27 +1,28 @@
const processCSV = async (csv, { filterColumn, filterValue, groupBy, aggregateColumn, operation }) => {
const [{ default: Papa }] = await Promise.all([
import('https://cdn.jsdelivr.net/npm/papaparse@5.4.1/+esm')
]);
const { data } = Papa.parse(csv, { header: true, skipEmptyLines: true });
async function processCSV(csv, config) {
const { parse } = await import('https://cdn.jsdelivr.net/npm/papaparse@5.4.1/+esm');
const filtered = data.filter(row => row[filterColumn] == filterValue);
const { data } = parse(csv, { header: true, skipEmptyLines: true });
const filtered = data.filter(row => row[config.filterColumn] == config.filterValue);
const groups = filtered.reduce((acc, row) => {
const key = row[groupBy];
if (!acc[key]) acc[key] = [];
acc[key].push(row);
const key = row[config.groupBy];
(acc[key] ??= []).push(row);
return acc;
}, {});
return Object.entries(groups).map(([key, rows]) => {
const values = rows.map(r => Number(r[aggregateColumn]) || 0);
const values = rows.map(r => Number(r[config.aggregateColumn]) || 0);
const sum = values.reduce((a, b) => a + b, 0);
return {
[groupBy]: key,
result: operation === 'sum' ? sum : operation === 'avg' ? sum / values.length : values.length
[config.groupBy]: key,
result: config.operation === 'sum' ? sum :
config.operation === 'avg' ? sum / values.length :
values.length
};
});
};
export default processCSV;
}
export default processCSV;
// Generation time: 4.238s
// Result: FAIL

View File

@@ -1,34 +0,0 @@
async function processCSV(csvString, config) {
const {
filterColumn: fc,
filterValue: fv,
groupBy: gb,
aggregateColumn: ac,
operation: op
} = config;
const { default: Papa } = await import('https://cdn.jsdelivr.net/npm/papaparse@5.3.2/papaparse.min.js');
const { data } = Papa.parse(csvString, {
header: true,
skipEmptyLines: true
});
const groups = data.reduce((acc, row) => {
if (row[fc] == fv) {
const key = row[gb];
const val = Number(row[ac]) || 0;
acc[key] = acc[key] || { sum: 0, count: 0 };
acc[key].sum += val;
acc[key].count++;
}
return acc;
}, {});
return Object.entries(groups).map(([key, { sum, count }]) => ({
[gb]: key,
result: op === 'avg' ? sum / count : op === 'sum' ? sum : count,
}));
}
export default processCSV;

View File

@@ -1,19 +1,16 @@
export const processCSV = async (csvString, { filterColumn, filterValue, groupBy, aggregateColumn, operation }) => {
const [{ csvParse }, { rollup, sum, mean }] = await Promise.all([
import('https://esm.sh/d3-dsv'),
import('https://esm.sh/d3-array')
]);
const getValue = d => +(d[aggregateColumn]) || 0;
const grouped = rollup(
csvParse(csvString).filter(row => row[filterColumn] == filterValue),
group => operation === 'count'
? group.length
: (operation === 'sum' ? sum : mean)(group, getValue),
row => row[groupBy]
);
return Array.from(grouped, ([key, result]) => ({ [groupBy]: key, result }));
const processCSV = async (str, { filterColumn: fc, filterValue: fv, groupBy: gb, aggregateColumn: ac, operation: op }) => {
const { csvParse, rollups, sum } = await import('https://esm.sh/d3@7');
const num = v => +v || 0;
return rollups(
csvParse(str).filter(d => d[fc] == fv),
g => {
if (op === 'count') return g.length;
const t = sum(g, d => num(d[ac]));
return op === 'sum' ? t : t / g.length;
},
d => d[gb]
).map(([k, v]) => ({ [gb]: k, result: v }));
};
export default processCSV;
export default processCSV;
// Generation time: 40.784s
// Result: PASS

View File

@@ -1,2 +1,17 @@
async function processCSV(csv,{filterColumn:f,filterValue:v,groupBy:g,aggregateColumn:a,operation:o}){const{default:P}=await import('https://cdn.jsdelivr.net/npm/papaparse@5.4.1/+esm');const{data}=P.parse(csv,{header:true});const grouped=data.filter(r=>r[f]==v).reduce((c,r)=>{const k=r[g],n=Number(r[a])||0;c[k]||=(c[k]={s:0,c:0});c[k].s+=n;c[k].c++;return c},{});return Object.entries(grouped).map(([k,{s,c}])=>({[g]:k,result:o=='sum'?s:o=='avg'?s/c:c}))}
export default processCSV;
async function processCSV(csv, { filterColumn: fc, filterValue: fv, groupBy: gb, aggregateColumn: ac, operation: op }) {
const { default: Papa } = await import('https://cdn.jsdelivr.net/npm/papaparse@5.4.1/+esm');
const groups = {};
Papa.parse(csv, { header: true }).data
.filter(r => r[fc] == fv)
.forEach(r => {
const key = r[gb], g = groups[key] || (groups[key] = { c: 0, s: 0 });
g.c++;
g.s += +r[ac] || 0;
});
return Object.entries(groups).map(([k, { c, s }]) => ({ [gb]: k, result: op === 'count' ? c : op === 'avg' ? s / c : s }));
}
export default processCSV;
// Generation time: 66.769s
// Result: PASS

View File

@@ -1,21 +1,16 @@
const libCache={},load=u=>libCache[u]??=import(u);
const store={},load=u=>store[u]??=import(u),csvLib='https://cdn.jsdelivr.net/npm/papaparse@5.4.1/+esm',dataLib='https://cdn.jsdelivr.net/npm/lodash-es@4.17.21/+esm',toNum=v=>{const n=Number(v);return Number.isFinite(n)?n:0};
async function processCSV(csv,cfg){
const [{csvParse},{groupBy}]=await Promise.all([
load('https://cdn.jsdelivr.net/npm/d3-dsv@3.0.1/+esm'),
load('https://cdn.jsdelivr.net/npm/lodash-es@4.17.21/+esm')
]);
const {filterColumn:f,filterValue:v,groupBy:k,aggregateColumn:a,operation:o}=cfg;
const rows=csvParse(csv).filter(r=>r[f]==v);
const grouped=groupBy(rows,r=>r[k]);
return Object.entries(grouped).map(([g,list])=>{
const nums=list.map(r=>{
const n=+r[a];
return Number.isFinite(n)?n:0;
});
const sum=nums.reduce((s,n)=>s+n,0);
const result=o==='count'?list.length:o==='sum'?sum:list.length?sum/list.length:0;
return {[k]:g,result};
async function processCSV(csv,opt){
const [{Papa},{groupBy:gb}] = await Promise.all([load(csvLib),load(dataLib)]);
const {filterColumn:f,filterValue:v,groupBy:g,aggregateColumn:a,operation:o}=opt;
const rows=Papa.parse(csv,{header:true,skipEmptyLines:true}).data.filter(r=>r&&r[f]==v);
const grouped=gb(rows,r=>r[g]);
return Object.entries(grouped).map(([k,items])=>{
const total=items.reduce((s,r)=>s+toNum(r[a]),0);
const result=o==='count'?items.length:o==='sum'?total:items.length?total/items.length:0;
return {[g]:k,result};
});
}
export default processCSV;
export default processCSV;
// Generation time: 29.916s
// Result: FAIL

View File

@@ -1,25 +0,0 @@
const processCSV = async (csvData, config) => {
const { parse } = await import('https://cdn.skypack.dev/papaparse@5.3.0')
const { filterColumn, filterValue, groupBy, aggregateColumn, operation } = config
const { data } = parse(csvData, { header: true })
const filtered = data.filter(row => row[filterColumn] == filterValue)
const groups = filtered.reduce((acc, row) => {
const key = row[groupBy]
if (!acc[key]) acc[key] = []
acc[key].push(row)
return acc
}, {})
return Object.entries(groups).map(([groupValue, rows]) => {
const numbers = rows.map(row => +row[aggregateColumn] || 0)
let result
if (operation === 'sum') result = numbers.reduce((a, b) => a + b, 0)
if (operation === 'avg') result = numbers.reduce((a, b) => a + b, 0) / numbers.length
if (operation === 'count') result = numbers.length
return { [groupBy]: groupValue, result }
})
}
export default processCSV;

View File

@@ -1,17 +0,0 @@
async function processCSV(csv,config){
const Papa=(await import('https://cdn.skypack.dev/papaparse')).default;
const parsed=Papa.parse(csv,{header:!0}).data;
const{filterColumn:fc,filterValue:fv,groupBy:gb,aggregateColumn:ac,operation:op}=config;
const filtered=parsed.filter(r=>r[fc]==fv);
const groups=new Map;
for(const r of filtered){
const gv=r[gb];
const v=Number(r[ac])||0;
const g=groups.get(gv)||{sum:0,count:0};
g.sum+=v;
g.count++;
groups.set(gv,g);
}
return Array.from(groups,(g,gv)=>(({[gb]:gv,result:op==='sum'?g.sum:op==='count'?g.count:g.sum/g.count})));
}
export default processCSV;

View File

@@ -1,15 +0,0 @@
async function processCSV(csv, config) {
const [{ default: Papa }, { aq, sum, mean, count }] = await Promise.all([
import('https://cdn.skypack.dev/papaparse'),
import('https://cdn.skypack.dev/arquero')
]);
const data = Papa.parse(csv, { header: true, skipEmptyLines: true }).data;
const { filterColumn, filterValue, groupBy, aggregateColumn, operation } = config;
let table = aq.from(data).filter(d => d[filterColumn] == filterValue);
if (operation !== 'count') {
table = table.derive({ [aggregateColumn]: d => Number(d[aggregateColumn]) || 0 });
}
const makeAgg = operation === 'count' ? count() : { sum: sum, avg: mean }[operation](aggregateColumn);
return table.groupby(groupBy).rollup({ result: makeAgg }).objects();
}
export default processCSV;

View File

@@ -0,0 +1,20 @@
async function processCSV(csvString, config) {
const d3 = await import('https://unpkg.com/d3?module');
const data = d3.csvParse(csvString);
const filtered = data.filter(row => row[config.filterColumn] == config.filterValue);
const grouped = d3.group(filtered, d => d[config.groupBy]);
return [...grouped].map(([key, group]) => {
const col = config.aggregateColumn;
const vals = group.map(r => Number(r[col]) || 0);
let result;
switch (config.operation) {
case 'sum': result = vals.reduce((a, b) => a + b, 0); break;
case 'avg': result = vals.reduce((a, b) => a + b, 0) / vals.length; break;
case 'count': result = group.length; break;
}
return { [config.groupBy]: key, result };
});
}
export default processCSV;
// Generation time: 34.010s
// Result: PASS